3.1.74 \(\int \frac {\sin ^4(e+f x)}{(a+b \tan ^2(e+f x))^2} \, dx\) [74]

3.1.74.1 Optimal result
3.1.74.2 Mathematica [A] (verified)
3.1.74.3 Rubi [A] (verified)
3.1.74.4 Maple [A] (verified)
3.1.74.5 Fricas [A] (verification not implemented)
3.1.74.6 Sympy [F(-1)]
3.1.74.7 Maxima [A] (verification not implemented)
3.1.74.8 Giac [A] (verification not implemented)
3.1.74.9 Mupad [B] (verification not implemented)

3.1.74.1 Optimal result

Integrand size = 23, antiderivative size = 196 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx=\frac {3 \left (a^2+6 a b+b^2\right ) x}{8 (a-b)^4}-\frac {3 \sqrt {a} \sqrt {b} (a+b) \arctan \left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a}}\right )}{2 (a-b)^4 f}-\frac {(5 a+b) \cos (e+f x) \sin (e+f x)}{8 (a-b)^2 f \left (a+b \tan ^2(e+f x)\right )}+\frac {\cos ^3(e+f x) \sin (e+f x)}{4 (a-b) f \left (a+b \tan ^2(e+f x)\right )}-\frac {3 b (3 a+b) \tan (e+f x)}{8 (a-b)^3 f \left (a+b \tan ^2(e+f x)\right )} \]

output
3/8*(a^2+6*a*b+b^2)*x/(a-b)^4-3/2*(a+b)*arctan(b^(1/2)*tan(f*x+e)/a^(1/2)) 
*a^(1/2)*b^(1/2)/(a-b)^4/f-1/8*(5*a+b)*cos(f*x+e)*sin(f*x+e)/(a-b)^2/f/(a+ 
b*tan(f*x+e)^2)+1/4*cos(f*x+e)^3*sin(f*x+e)/(a-b)/f/(a+b*tan(f*x+e)^2)-3/8 
*b*(3*a+b)*tan(f*x+e)/(a-b)^3/f/(a+b*tan(f*x+e)^2)
 
3.1.74.2 Mathematica [A] (verified)

Time = 2.20 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.69 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx=\frac {12 \left (a^2+6 a b+b^2\right ) (e+f x)-48 \sqrt {a} \sqrt {b} (a+b) \arctan \left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a}}\right )-8 (a-b) (a+b) \sin (2 (e+f x))-\frac {16 a (a-b) b \sin (2 (e+f x))}{a+b+(a-b) \cos (2 (e+f x))}+(a-b)^2 \sin (4 (e+f x))}{32 (a-b)^4 f} \]

input
Integrate[Sin[e + f*x]^4/(a + b*Tan[e + f*x]^2)^2,x]
 
output
(12*(a^2 + 6*a*b + b^2)*(e + f*x) - 48*Sqrt[a]*Sqrt[b]*(a + b)*ArcTan[(Sqr 
t[b]*Tan[e + f*x])/Sqrt[a]] - 8*(a - b)*(a + b)*Sin[2*(e + f*x)] - (16*a*( 
a - b)*b*Sin[2*(e + f*x)])/(a + b + (a - b)*Cos[2*(e + f*x)]) + (a - b)^2* 
Sin[4*(e + f*x)])/(32*(a - b)^4*f)
 
3.1.74.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.17, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 4146, 372, 402, 27, 402, 27, 397, 216, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^4}{\left (a+b \tan (e+f x)^2\right )^2}dx\)

\(\Big \downarrow \) 4146

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right )^3 \left (b \tan ^2(e+f x)+a\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\int \frac {a-(4 a+b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a\right )^2}d\tan (e+f x)}{4 (a-b)}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\frac {(5 a+b) \tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)\right )}-\frac {\int \frac {3 \left (a (a+b)-b (5 a+b) \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )^2}d\tan (e+f x)}{2 (a-b)}}{4 (a-b)}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\frac {(5 a+b) \tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)\right )}-\frac {3 \int \frac {a (a+b)-b (5 a+b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )^2}d\tan (e+f x)}{2 (a-b)}}{4 (a-b)}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\frac {(5 a+b) \tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)\right )}-\frac {3 \left (\frac {\int \frac {2 a \left (a (a+3 b)-b (3 a+b) \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )}d\tan (e+f x)}{2 a (a-b)}-\frac {b (3 a+b) \tan (e+f x)}{(a-b) \left (a+b \tan ^2(e+f x)\right )}\right )}{2 (a-b)}}{4 (a-b)}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\frac {(5 a+b) \tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)\right )}-\frac {3 \left (\frac {\int \frac {a (a+3 b)-b (3 a+b) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a\right )}d\tan (e+f x)}{a-b}-\frac {b (3 a+b) \tan (e+f x)}{(a-b) \left (a+b \tan ^2(e+f x)\right )}\right )}{2 (a-b)}}{4 (a-b)}}{f}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\frac {(5 a+b) \tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)\right )}-\frac {3 \left (\frac {\frac {\left (a^2+6 a b+b^2\right ) \int \frac {1}{\tan ^2(e+f x)+1}d\tan (e+f x)}{a-b}-\frac {4 a b (a+b) \int \frac {1}{b \tan ^2(e+f x)+a}d\tan (e+f x)}{a-b}}{a-b}-\frac {b (3 a+b) \tan (e+f x)}{(a-b) \left (a+b \tan ^2(e+f x)\right )}\right )}{2 (a-b)}}{4 (a-b)}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\frac {(5 a+b) \tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)\right )}-\frac {3 \left (\frac {\frac {\left (a^2+6 a b+b^2\right ) \arctan (\tan (e+f x))}{a-b}-\frac {4 a b (a+b) \int \frac {1}{b \tan ^2(e+f x)+a}d\tan (e+f x)}{a-b}}{a-b}-\frac {b (3 a+b) \tan (e+f x)}{(a-b) \left (a+b \tan ^2(e+f x)\right )}\right )}{2 (a-b)}}{4 (a-b)}}{f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 (a-b) \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)\right )}-\frac {\frac {(5 a+b) \tan (e+f x)}{2 (a-b) \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)\right )}-\frac {3 \left (\frac {\frac {\left (a^2+6 a b+b^2\right ) \arctan (\tan (e+f x))}{a-b}-\frac {4 \sqrt {a} \sqrt {b} (a+b) \arctan \left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a}}\right )}{a-b}}{a-b}-\frac {b (3 a+b) \tan (e+f x)}{(a-b) \left (a+b \tan ^2(e+f x)\right )}\right )}{2 (a-b)}}{4 (a-b)}}{f}\)

input
Int[Sin[e + f*x]^4/(a + b*Tan[e + f*x]^2)^2,x]
 
output
(Tan[e + f*x]/(4*(a - b)*(1 + Tan[e + f*x]^2)^2*(a + b*Tan[e + f*x]^2)) - 
(((5*a + b)*Tan[e + f*x])/(2*(a - b)*(1 + Tan[e + f*x]^2)*(a + b*Tan[e + f 
*x]^2)) - (3*((((a^2 + 6*a*b + b^2)*ArcTan[Tan[e + f*x]])/(a - b) - (4*Sqr 
t[a]*Sqrt[b]*(a + b)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a]])/(a - b))/(a - 
 b) - (b*(3*a + b)*Tan[e + f*x])/((a - b)*(a + b*Tan[e + f*x]^2))))/(2*(a 
- b)))/(4*(a - b)))/f
 

3.1.74.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4146
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[c*(ff^(m + 1)/f)   Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)^(m/ 
2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x 
] && IntegerQ[m/2]
 
3.1.74.4 Maple [A] (verified)

Time = 15.25 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.81

method result size
derivativedivides \(\frac {-\frac {a b \left (\frac {\left (\frac {a}{2}-\frac {b}{2}\right ) \tan \left (f x +e \right )}{a +b \tan \left (f x +e \right )^{2}}+\frac {3 \left (a +b \right ) \arctan \left (\frac {b \tan \left (f x +e \right )}{\sqrt {a b}}\right )}{2 \sqrt {a b}}\right )}{\left (a -b \right )^{4}}+\frac {\frac {\left (-\frac {5}{8} a^{2}+\frac {1}{4} a b +\frac {3}{8} b^{2}\right ) \tan \left (f x +e \right )^{3}+\left (-\frac {3}{8} a^{2}+\frac {5}{8} b^{2}-\frac {1}{4} a b \right ) \tan \left (f x +e \right )}{\left (1+\tan \left (f x +e \right )^{2}\right )^{2}}+\frac {3 \left (a^{2}+6 a b +b^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )}{8}}{\left (a -b \right )^{4}}}{f}\) \(159\)
default \(\frac {-\frac {a b \left (\frac {\left (\frac {a}{2}-\frac {b}{2}\right ) \tan \left (f x +e \right )}{a +b \tan \left (f x +e \right )^{2}}+\frac {3 \left (a +b \right ) \arctan \left (\frac {b \tan \left (f x +e \right )}{\sqrt {a b}}\right )}{2 \sqrt {a b}}\right )}{\left (a -b \right )^{4}}+\frac {\frac {\left (-\frac {5}{8} a^{2}+\frac {1}{4} a b +\frac {3}{8} b^{2}\right ) \tan \left (f x +e \right )^{3}+\left (-\frac {3}{8} a^{2}+\frac {5}{8} b^{2}-\frac {1}{4} a b \right ) \tan \left (f x +e \right )}{\left (1+\tan \left (f x +e \right )^{2}\right )^{2}}+\frac {3 \left (a^{2}+6 a b +b^{2}\right ) \arctan \left (\tan \left (f x +e \right )\right )}{8}}{\left (a -b \right )^{4}}}{f}\) \(159\)
risch \(\frac {3 x \,a^{2}}{8 \left (a^{2}-2 a b +b^{2}\right ) \left (a -b \right )^{2}}+\frac {9 x a b}{4 \left (a^{2}-2 a b +b^{2}\right ) \left (a -b \right )^{2}}+\frac {3 x \,b^{2}}{8 \left (a^{2}-2 a b +b^{2}\right ) \left (a -b \right )^{2}}-\frac {i {\mathrm e}^{4 i \left (f x +e \right )}}{64 \left (a -b \right )^{2} f}+\frac {i {\mathrm e}^{2 i \left (f x +e \right )} a}{8 \left (a -b \right )^{3} f}+\frac {i {\mathrm e}^{2 i \left (f x +e \right )} b}{8 \left (a -b \right )^{3} f}-\frac {i {\mathrm e}^{-2 i \left (f x +e \right )} a}{8 \left (a^{3}-3 a^{2} b +3 a \,b^{2}-b^{3}\right ) f}-\frac {i {\mathrm e}^{-2 i \left (f x +e \right )} b}{8 \left (a^{3}-3 a^{2} b +3 a \,b^{2}-b^{3}\right ) f}+\frac {i {\mathrm e}^{-4 i \left (f x +e \right )}}{64 \left (a^{2}-2 a b +b^{2}\right ) f}-\frac {i a b \left (a \,{\mathrm e}^{2 i \left (f x +e \right )}+b \,{\mathrm e}^{2 i \left (f x +e \right )}+a -b \right )}{f \left (a^{2}-2 a b +b^{2}\right ) \left (a -b \right )^{2} \left (a \,{\mathrm e}^{4 i \left (f x +e \right )}-b \,{\mathrm e}^{4 i \left (f x +e \right )}+2 a \,{\mathrm e}^{2 i \left (f x +e \right )}+2 b \,{\mathrm e}^{2 i \left (f x +e \right )}+a -b \right )}+\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+\frac {2 i \sqrt {-a b}+a +b}{a -b}\right ) a}{4 \left (a -b \right )^{4} f}+\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+\frac {2 i \sqrt {-a b}+a +b}{a -b}\right ) b}{4 \left (a -b \right )^{4} f}-\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {2 i \sqrt {-a b}-a -b}{a -b}\right ) a}{4 \left (a -b \right )^{4} f}-\frac {3 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {2 i \sqrt {-a b}-a -b}{a -b}\right ) b}{4 \left (a -b \right )^{4} f}\) \(572\)

input
int(sin(f*x+e)^4/(a+b*tan(f*x+e)^2)^2,x,method=_RETURNVERBOSE)
 
output
1/f*(-a*b/(a-b)^4*((1/2*a-1/2*b)*tan(f*x+e)/(a+b*tan(f*x+e)^2)+3/2*(a+b)/( 
a*b)^(1/2)*arctan(b*tan(f*x+e)/(a*b)^(1/2)))+1/(a-b)^4*(((-5/8*a^2+1/4*a*b 
+3/8*b^2)*tan(f*x+e)^3+(-3/8*a^2+5/8*b^2-1/4*a*b)*tan(f*x+e))/(1+tan(f*x+e 
)^2)^2+3/8*(a^2+6*a*b+b^2)*arctan(tan(f*x+e))))
 
3.1.74.5 Fricas [A] (verification not implemented)

Time = 0.38 (sec) , antiderivative size = 705, normalized size of antiderivative = 3.60 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx=\left [\frac {3 \, {\left (a^{3} + 5 \, a^{2} b - 5 \, a b^{2} - b^{3}\right )} f x \cos \left (f x + e\right )^{2} + 3 \, {\left (a^{2} b + 6 \, a b^{2} + b^{3}\right )} f x + 3 \, {\left ({\left (a^{2} - b^{2}\right )} \cos \left (f x + e\right )^{2} + a b + b^{2}\right )} \sqrt {-a b} \log \left (\frac {{\left (a^{2} + 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a + b\right )} \cos \left (f x + e\right )^{3} - b \cos \left (f x + e\right )\right )} \sqrt {-a b} \sin \left (f x + e\right ) + b^{2}}{{\left (a^{2} - 2 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 2 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + b^{2}}\right ) + {\left (2 \, {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )^{5} - {\left (5 \, a^{3} - 9 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{3} - 3 \, {\left (3 \, a^{2} b - 2 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{8 \, {\left ({\left (a^{5} - 5 \, a^{4} b + 10 \, a^{3} b^{2} - 10 \, a^{2} b^{3} + 5 \, a b^{4} - b^{5}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{4} b - 4 \, a^{3} b^{2} + 6 \, a^{2} b^{3} - 4 \, a b^{4} + b^{5}\right )} f\right )}}, \frac {3 \, {\left (a^{3} + 5 \, a^{2} b - 5 \, a b^{2} - b^{3}\right )} f x \cos \left (f x + e\right )^{2} + 3 \, {\left (a^{2} b + 6 \, a b^{2} + b^{3}\right )} f x + 6 \, {\left ({\left (a^{2} - b^{2}\right )} \cos \left (f x + e\right )^{2} + a b + b^{2}\right )} \sqrt {a b} \arctan \left (\frac {{\left ({\left (a + b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt {a b}}{2 \, a b \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) + {\left (2 \, {\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )^{5} - {\left (5 \, a^{3} - 9 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \cos \left (f x + e\right )^{3} - 3 \, {\left (3 \, a^{2} b - 2 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{8 \, {\left ({\left (a^{5} - 5 \, a^{4} b + 10 \, a^{3} b^{2} - 10 \, a^{2} b^{3} + 5 \, a b^{4} - b^{5}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{4} b - 4 \, a^{3} b^{2} + 6 \, a^{2} b^{3} - 4 \, a b^{4} + b^{5}\right )} f\right )}}\right ] \]

input
integrate(sin(f*x+e)^4/(a+b*tan(f*x+e)^2)^2,x, algorithm="fricas")
 
output
[1/8*(3*(a^3 + 5*a^2*b - 5*a*b^2 - b^3)*f*x*cos(f*x + e)^2 + 3*(a^2*b + 6* 
a*b^2 + b^3)*f*x + 3*((a^2 - b^2)*cos(f*x + e)^2 + a*b + b^2)*sqrt(-a*b)*l 
og(((a^2 + 6*a*b + b^2)*cos(f*x + e)^4 - 2*(3*a*b + b^2)*cos(f*x + e)^2 + 
4*((a + b)*cos(f*x + e)^3 - b*cos(f*x + e))*sqrt(-a*b)*sin(f*x + e) + b^2) 
/((a^2 - 2*a*b + b^2)*cos(f*x + e)^4 + 2*(a*b - b^2)*cos(f*x + e)^2 + b^2) 
) + (2*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^5 - (5*a^3 - 9*a^2*b + 
 3*a*b^2 + b^3)*cos(f*x + e)^3 - 3*(3*a^2*b - 2*a*b^2 - b^3)*cos(f*x + e)) 
*sin(f*x + e))/((a^5 - 5*a^4*b + 10*a^3*b^2 - 10*a^2*b^3 + 5*a*b^4 - b^5)* 
f*cos(f*x + e)^2 + (a^4*b - 4*a^3*b^2 + 6*a^2*b^3 - 4*a*b^4 + b^5)*f), 1/8 
*(3*(a^3 + 5*a^2*b - 5*a*b^2 - b^3)*f*x*cos(f*x + e)^2 + 3*(a^2*b + 6*a*b^ 
2 + b^3)*f*x + 6*((a^2 - b^2)*cos(f*x + e)^2 + a*b + b^2)*sqrt(a*b)*arctan 
(1/2*((a + b)*cos(f*x + e)^2 - b)*sqrt(a*b)/(a*b*cos(f*x + e)*sin(f*x + e) 
)) + (2*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cos(f*x + e)^5 - (5*a^3 - 9*a^2*b 
+ 3*a*b^2 + b^3)*cos(f*x + e)^3 - 3*(3*a^2*b - 2*a*b^2 - b^3)*cos(f*x + e) 
)*sin(f*x + e))/((a^5 - 5*a^4*b + 10*a^3*b^2 - 10*a^2*b^3 + 5*a*b^4 - b^5) 
*f*cos(f*x + e)^2 + (a^4*b - 4*a^3*b^2 + 6*a^2*b^3 - 4*a*b^4 + b^5)*f)]
 
3.1.74.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx=\text {Timed out} \]

input
integrate(sin(f*x+e)**4/(a+b*tan(f*x+e)**2)**2,x)
 
output
Timed out
 
3.1.74.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 312, normalized size of antiderivative = 1.59 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx=\frac {\frac {3 \, {\left (a^{2} + 6 \, a b + b^{2}\right )} {\left (f x + e\right )}}{a^{4} - 4 \, a^{3} b + 6 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}} - \frac {12 \, {\left (a^{2} b + a b^{2}\right )} \arctan \left (\frac {b \tan \left (f x + e\right )}{\sqrt {a b}}\right )}{{\left (a^{4} - 4 \, a^{3} b + 6 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}\right )} \sqrt {a b}} - \frac {3 \, {\left (3 \, a b + b^{2}\right )} \tan \left (f x + e\right )^{5} + {\left (5 \, a^{2} + 14 \, a b + 5 \, b^{2}\right )} \tan \left (f x + e\right )^{3} + 3 \, {\left (a^{2} + 3 \, a b\right )} \tan \left (f x + e\right )}{{\left (a^{3} b - 3 \, a^{2} b^{2} + 3 \, a b^{3} - b^{4}\right )} \tan \left (f x + e\right )^{6} + {\left (a^{4} - a^{3} b - 3 \, a^{2} b^{2} + 5 \, a b^{3} - 2 \, b^{4}\right )} \tan \left (f x + e\right )^{4} + a^{4} - 3 \, a^{3} b + 3 \, a^{2} b^{2} - a b^{3} + {\left (2 \, a^{4} - 5 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3} - b^{4}\right )} \tan \left (f x + e\right )^{2}}}{8 \, f} \]

input
integrate(sin(f*x+e)^4/(a+b*tan(f*x+e)^2)^2,x, algorithm="maxima")
 
output
1/8*(3*(a^2 + 6*a*b + b^2)*(f*x + e)/(a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 
+ b^4) - 12*(a^2*b + a*b^2)*arctan(b*tan(f*x + e)/sqrt(a*b))/((a^4 - 4*a^3 
*b + 6*a^2*b^2 - 4*a*b^3 + b^4)*sqrt(a*b)) - (3*(3*a*b + b^2)*tan(f*x + e) 
^5 + (5*a^2 + 14*a*b + 5*b^2)*tan(f*x + e)^3 + 3*(a^2 + 3*a*b)*tan(f*x + e 
))/((a^3*b - 3*a^2*b^2 + 3*a*b^3 - b^4)*tan(f*x + e)^6 + (a^4 - a^3*b - 3* 
a^2*b^2 + 5*a*b^3 - 2*b^4)*tan(f*x + e)^4 + a^4 - 3*a^3*b + 3*a^2*b^2 - a* 
b^3 + (2*a^4 - 5*a^3*b + 3*a^2*b^2 + a*b^3 - b^4)*tan(f*x + e)^2))/f
 
3.1.74.8 Giac [A] (verification not implemented)

Time = 0.64 (sec) , antiderivative size = 256, normalized size of antiderivative = 1.31 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx=\frac {\frac {3 \, {\left (a^{2} + 6 \, a b + b^{2}\right )} {\left (f x + e\right )}}{a^{4} - 4 \, a^{3} b + 6 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}} - \frac {4 \, a b \tan \left (f x + e\right )}{{\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} {\left (b \tan \left (f x + e\right )^{2} + a\right )}} - \frac {12 \, {\left (a^{2} b + a b^{2}\right )} {\left (\pi \left \lfloor \frac {f x + e}{\pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (b\right ) + \arctan \left (\frac {b \tan \left (f x + e\right )}{\sqrt {a b}}\right )\right )}}{{\left (a^{4} - 4 \, a^{3} b + 6 \, a^{2} b^{2} - 4 \, a b^{3} + b^{4}\right )} \sqrt {a b}} - \frac {5 \, a \tan \left (f x + e\right )^{3} + 3 \, b \tan \left (f x + e\right )^{3} + 3 \, a \tan \left (f x + e\right ) + 5 \, b \tan \left (f x + e\right )}{{\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} {\left (\tan \left (f x + e\right )^{2} + 1\right )}^{2}}}{8 \, f} \]

input
integrate(sin(f*x+e)^4/(a+b*tan(f*x+e)^2)^2,x, algorithm="giac")
 
output
1/8*(3*(a^2 + 6*a*b + b^2)*(f*x + e)/(a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 
+ b^4) - 4*a*b*tan(f*x + e)/((a^3 - 3*a^2*b + 3*a*b^2 - b^3)*(b*tan(f*x + 
e)^2 + a)) - 12*(a^2*b + a*b^2)*(pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arc 
tan(b*tan(f*x + e)/sqrt(a*b)))/((a^4 - 4*a^3*b + 6*a^2*b^2 - 4*a*b^3 + b^4 
)*sqrt(a*b)) - (5*a*tan(f*x + e)^3 + 3*b*tan(f*x + e)^3 + 3*a*tan(f*x + e) 
 + 5*b*tan(f*x + e))/((a^3 - 3*a^2*b + 3*a*b^2 - b^3)*(tan(f*x + e)^2 + 1) 
^2))/f
 
3.1.74.9 Mupad [B] (verification not implemented)

Time = 15.29 (sec) , antiderivative size = 4616, normalized size of antiderivative = 23.55 \[ \int \frac {\sin ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^2} \, dx=\text {Too large to display} \]

input
int(sin(e + f*x)^4/(a + b*tan(e + f*x)^2)^2,x)
 
output
(atan(((((tan(e + f*x)*(108*a*b^6 + 9*b^7 + 486*a^2*b^5 + 396*a^3*b^4 + 15 
3*a^4*b^3))/(32*(a^6 - 6*a^5*b - 6*a*b^5 + b^6 + 15*a^2*b^4 - 20*a^3*b^3 + 
 15*a^4*b^2)) - (3*(((9*a*b^11)/2 - (69*a^2*b^10)/2 + 114*a^3*b^9 - 210*a^ 
4*b^8 + 231*a^5*b^7 - 147*a^6*b^6 + 42*a^7*b^5 + 6*a^8*b^4 - (15*a^9*b^3)/ 
2 + (3*a^10*b^2)/2)/(9*a*b^8 - 9*a^8*b + a^9 - b^9 - 36*a^2*b^7 + 84*a^3*b 
^6 - 126*a^4*b^5 + 126*a^5*b^4 - 84*a^6*b^3 + 36*a^7*b^2) - (3*tan(e + f*x 
)*(a*b*6i + a^2*1i + b^2*1i)*(256*b^11 - 1792*a*b^10 + 5120*a^2*b^9 - 7168 
*a^3*b^8 + 3584*a^4*b^7 + 3584*a^5*b^6 - 7168*a^6*b^5 + 5120*a^7*b^4 - 179 
2*a^8*b^3 + 256*a^9*b^2))/(512*(a^4 - 4*a^3*b - 4*a*b^3 + b^4 + 6*a^2*b^2) 
*(a^6 - 6*a^5*b - 6*a*b^5 + b^6 + 15*a^2*b^4 - 20*a^3*b^3 + 15*a^4*b^2)))* 
(a*b*6i + a^2*1i + b^2*1i))/(16*(a^4 - 4*a^3*b - 4*a*b^3 + b^4 + 6*a^2*b^2 
)))*(a*b*6i + a^2*1i + b^2*1i)*3i)/(16*(a^4 - 4*a^3*b - 4*a*b^3 + b^4 + 6* 
a^2*b^2)) + (((tan(e + f*x)*(108*a*b^6 + 9*b^7 + 486*a^2*b^5 + 396*a^3*b^4 
 + 153*a^4*b^3))/(32*(a^6 - 6*a^5*b - 6*a*b^5 + b^6 + 15*a^2*b^4 - 20*a^3* 
b^3 + 15*a^4*b^2)) + (3*(((9*a*b^11)/2 - (69*a^2*b^10)/2 + 114*a^3*b^9 - 2 
10*a^4*b^8 + 231*a^5*b^7 - 147*a^6*b^6 + 42*a^7*b^5 + 6*a^8*b^4 - (15*a^9* 
b^3)/2 + (3*a^10*b^2)/2)/(9*a*b^8 - 9*a^8*b + a^9 - b^9 - 36*a^2*b^7 + 84* 
a^3*b^6 - 126*a^4*b^5 + 126*a^5*b^4 - 84*a^6*b^3 + 36*a^7*b^2) + (3*tan(e 
+ f*x)*(a*b*6i + a^2*1i + b^2*1i)*(256*b^11 - 1792*a*b^10 + 5120*a^2*b^9 - 
 7168*a^3*b^8 + 3584*a^4*b^7 + 3584*a^5*b^6 - 7168*a^6*b^5 + 5120*a^7*b...